

SCSI TOOLBOX, LLC
VCPSSL Threaded Functions - Getting
Started

© Copyright 2011 SCSI Toolbox, LLC | Sales: 720.249.2641 | General: 303.972.2072

CREATING A VCPSSL DTB PROJECT ... 4

Step 1: ... 4

Step 2: ... 4

Step 3: ... 4

Step 4: ... 4

The APIs that every VCPSSL application must have .. 5

API: VCSCSIPrepareForNewDiskTestSequence ... 5

API: VCSCSIAddDiskDeviceToBeTested ... 5

API: VCSCSIStartDiskTestSequence ... 5

Available Tests .. 6

API: VCSCSIAddDiskWriteTest_Time ... 6

API: VCSCSIAddDiskWriteTest_Blocks... 7

API: VCSCSIAddDiskReadTest_Time .. 8

API: VCSCSIAddDiskReadTest_Blocks.. 8

API: VCSCSIAddDiskWriteReadTest_Time ... 9

API: VCSCSIAddDiskWriteReadTest_Blocks .. 9

API: VCSCSIAddDiskVerifyTest_Time .. 9

API: VCSCSIAddDiskVerifyTest_Blocks .. 10

API: VCSCSIAddDiskWriteVerifyTest_Time ... 10

API: VCSCSIAddDiskWriteVerifyTest_Blocks ... 10

API: VCSCSIAddDiskSeekTest_Time .. 11

API: VCSCSIAddDiskSeekTest_Blocks .. 11

API: VCSCSIAddDiskFormatTest_SameSize .. 11

API: VCSCSIAddDiskFormatTest_NewSize .. 11

API: VCSCSIAddDiskFWDownloadTest ... 11

API: VCSCSIAddDiskSpinTest .. 12

API: VCSCSIAddDiskSynchronizeTest .. 12

API: VCSCSIAddDiskStreamingTest_Time ... 12

API: VCSCSIAddDiskStreamingTest_Blocks ... 13

API: VCSCSIAddDiskOLTPTest_Time .. 13

API: VCSCSIAddDiskOLTPTest_Blocks ... 14

API: VCSCSIAddDiskFileServerTest_Time .. 15

© Copyright 2011 SCSI Toolbox, LLC | Sales: 720.249.2641 | General: 303.972.2072

API: VCSCSIAddDiskFileServerTest_Blocks .. 15

API: VCSCSIAddDiskWebServerTest_Time .. 16

API: VCSCSIAddDiskWebServerTest_Blocks .. 16

API: VCSCSIAddDiskWorkStationTest_Time.. 17

API: VCSCSIAddDiskWorkStationTest_Blocks ... 18

API: VCSCSIAddDiskClearLogPagesTest .. 18

API: VCSCSIAddDiskSaveLogPagesTest ... 19

API: VCSCSIAddDiskDSTTest .. 19

API: VCSCSIAddDiskDelayTest ... 19

API: VCSCSIAddDiskAdjTrkIntfTest .. 19

API: VCSCSIAddDiskSMARTTest .. 20

API: VCSCSIAddDiskSATAFWDLTest .. 21

Getting the Status of a Test .. 21

API: VCSCSIGetDiskTestStatus .. 21

API: VCSCSIGetDiskTestStatusWData ... 22

API: VCSCSIGetDiskTestStatusWStruct ... 23

Additional APIs: Pausing, Stopping, Resuming ... 23

API: VCSCSIPauseDiskTest ... 23

API: VCSCSIResumeDiskTest ... 24

API: VCSCSIStopDiskTest ... 24

API: VCSCSIStopAllDiskTest ... 24

EXAMPLE CODE ... 25

© Copyright 2011 SCSI Toolbox, LLC | Sales: 720.249.2641 | General: 303.972.2072

CREATING A VCPSSL DTB PROJECT

Step 1: Copy the file VCPSSLImports.h into the project folder (this file will be in c:\Program

Files\STB\DTB\VisualC++)

Step 2: In your StdAfx.h file, add the line

 #include "VCPSSLImports.h

Step 3: Insure that STBVCBase.dll and VCPSSL.dll are in the System32 folder

 Step 4:
 Copy the file VCPSSL.lib into your project folder (the file VCPSSL.lib will be in c:\Program

Files\STB\DTB\VisualC++)

 Select the Visual Studio Main Menu ‘Project’ choice

 Select the ‘Settings’ choice

 Highlight your project name in the left pane, then click the ‘Link’ tab

 Choose the ‘General’ selection from the ‘Category’ combo selection box

 In the ‘Object/Library Modules’ edit box type “VCPSSL.LIB”

IMPORTANT: When debugging, you'll need to tell VC++ the relative path to VCPSSL.lib by going to the

Link tab, insure the "Category" combobox has "Input" selected, and then in the "Additional library path"

editbox, enter the relative path. In most cases, you should enter "..\" without the quotation marks.

© Copyright 2011 SCSI Toolbox, LLC | Sales: 720.249.2641 | General: 303.972.2072

The APIs that every VCPSSL application must have

The outline below contains the five basic parts of any VCPSSL application.

1. BOOL VCSCSIPrepareForNewDiskTestSequence();

2. BOOL VCSCSIAddDiskDeviceToBeTested(int nHA,int nTid,int nLun);

3. “APIs to add tests to your test sequence (for example VCSCSIAddDiskWriteTest_Time)”

4. BOOL VCSCSIStartDiskTestSequence();

5. “APIs to retrieve status of the tests in your test sequence (for example

VCSCSIGetDiskTestStatus)”

API: VCSCSIPrepareForNewDiskTestSequence
BOOL VCSCSIPrepareForNewDiskTestSequence()

VCSCSIPrepareForNewDiskTestSequence is called to prepare the library to start threaded testing.

Basically you call this function “to start everything from a fresh start”

API: VCSCSIAddDiskDeviceToBeTested
BOOL VCSCSIAddDiskDeviceToBeTested(int nHA,int nTid,int nLun)

You call VCSCSIAddDiskDeviceToBeTested to tell the library which devices you want to test.

Return Values:

TRUE – The disk device identified by nHA, nTid, nLun was added to the array of devices to be tested

FALSE – The disk device identified by nHA, nTid, nLun was either not found, or the device was previously

added so was NOT added a second time

API: VCSCSIStartDiskTestSequence
BOOL VCSCSIStartDiskTestSequence()

After you have added all the devices to be tested via API VCSCSIAddDiskDeviceToBeTested, and after

you’ve added all the tests (these APIs are covered below), you would then tell the library to begin

testing by calling API VCSCSIStartDiskTestSequence.

© Copyright 2011 SCSI Toolbox, LLC | Sales: 720.249.2641 | General: 303.972.2072

Available Tests

API: VCSCSIAddDiskWriteTest_Time
BOOL VCSCSIAddDiskWriteTest_Time(

 int nNumberOfMinutes = 1,

int nRandomOrSeq = 1,

int nStartLBA = 0,

 ePATTERN_TYPE ePatType = eIncrementing,

 char * pstrPatternFile = NULL,

 BOOL bOverlayLBA = FALSE,

 SPECIAL_OPTIONS * pSO = NULL)

Discussion: First note all the parameters have default values. The possible values for nRandomOrSeq

are as follows:

nNumberOfMinutes:

Pass in the number of minutes you want to test to run for. If you want to run the test by seconds, you

must enter the number of seconds in the high 16 bits of the integer!

Example: 0x00000003 runs the test for 3 minutes

Example: 0x00070003 runs the test for 3 minutes and 7 seconds

Example: 0x00070000 runs the test for 7 seconds

nRandomOrSeq:

- 0 for Random Access

- 1 for Sequential Access

- 2 for Butterfly Access

- 3 for CPAM Access

The available patterns are as follows:

ePatType:

- eAllZeroes (0x00)

- eAllOnes (0xFF)

- eAltZeroAndOne (0x55)

- eAltOneAndZero (0xAA)

- eLBA

- eRandom

© Copyright 2011 SCSI Toolbox, LLC | Sales: 720.249.2641 | General: 303.972.2072

- eUserPat (pattern file must contain ascii characters)

- eUserPatBinary (pattern file can contain any type of data)

- eWalkingZeros (all bits are ‘1’ except for one ‘0’ which “walks to the right”, the pattern generated

is 0x7F 0xBF 0xDF 0xEF 0xF7 0xFB 0xFD 0xFE)

- eWalkingOnes (all bits are ‘0’ except for one ‘1’ which “walks to the left”, the pattern generated is

0x01 0x02 0x04 0x08 0x10 0x20 0x40 0x80)

- eAlt1And0ThenAlt0And1 (0xA5)

- eAlt0And1ThenAlt1And0 (0x5A)

- e2To1Compressable (for tape drives)

pstrPatternFile:

If you are using pattern type eUserPat or eUserPatBinary then you must pass in the fully-qualified path

and filename that has the pattern

bOverlayLBA:

If you pass in TRUE for bOverlayLBA then for each block of data the LBA will be overlayed on the first 4

bytes (if the Capacity of the drive is less than 2TeraBytes) and on the first 8 bytes (if the Capacity of the

drive is more than 2TeraBytes)

 pSO:

The SPECIAL_OPTIONS data structure has the following fields:

int nVersionNumber;
int nSizeOfThisStruct;
__int64 i64HighBlockForThisTest;
BOOL bOverlayLBAOnEndOfBlock; //Can overlay the LBA on the last part of each block
BOOL bDataCompareOnOnlyOverlays; //On data compare you can do the compare only on the
overlays

BOOL bOverlayKey; //If set to TRUE, we overlay the “key” after the LBA overlay
int nOverlayKey; //This contains the “key” you want to overlay

API: VCSCSIAddDiskWriteTest_Blocks
BOOL VCSCSIAddDiskWriteTest_Blocks(

 long lNumBlocksToWrite = -1,

 int nRandomOrSeq = 1,

 int nStartLBA = 0,

 ePATTERN_TYPE ePatType = eIncrementing,

 char * pstrPatternFile = NULL,

 BOOL bOverlayLBA = FALSE)

© Copyright 2011 SCSI Toolbox, LLC | Sales: 720.249.2641 | General: 303.972.2072

We’ve already discussed most of the parameters when going over the API

VCSCSIAddDiskWriteTest_Time, but the parameter lNumBlockstoWrite needs special mention.

lNumBlockstoWrite:

Pass in the number of blocks you want to test to run for. The special number “-1” means to run the test

for the number of blocks on the entire drive

 API: VCSCSIAddDiskReadTest_Time
BOOL VCSCSIAddDiskReadTest_Time(

 int nNumberOfMinutes = 1,

 int nRandomOrSeq = 1,

 int nStartLBA = 0,

 ePATTERN_TYPE ePatType = eIncrementing,

 char * pstrPatternFile = NULL,

 BOOL bOverlayLBA = FALSE,

 BOOL bCompareData = FALSE,

 SPECIAL_OPTIONS * pSO = NULL)

bCompareData:

Pass in TRUE for bCompareData to cause the library to do a data compare on the data read from the

drive. The question asked many times is: what data are you comparing it to? The answer is to the

ePatType you pass in and bOverlayLBA you pass in. From these 2 parameters, the library generates the

expected pattern. It then compares this expected pattern to the actual data retrieved from the drive. If

there is a mismatch, the test fails with a “miscompare”.

API: VCSCSIAddDiskReadTest_Blocks
BOOL VCSCSIAddDiskReadTest_Blocks(

 long lNumBlocksToWrite = -1,

 int nRandomOrSeq = 1,

 int nStartLBA = 0,

 ePATTERN_TYPE ePatType = eIncrementing,

 char * pstrPatternFile = NULL,

 BOOL bOverlayLBA = FALSE,

 BOOL bCompareData = FALSE,

 SPECIAL_OPTIONS * pSO = NULL)

© Copyright 2011 SCSI Toolbox, LLC | Sales: 720.249.2641 | General: 303.972.2072

API: VCSCSIAddDiskWriteReadTest_Time
BOOL VCSCSIAddDiskWriteReadTest_Time(

 int nNumberOfMinutes = 1,

 int nRandomOrSeq = 1,

 int nStartLBA = 0,

 ePATTERN_TYPE ePatType = eIncrementing,

 char * pstrPatternFile = NULL,

 BOOL bOverlayLBA = FALSE,

 BOOL bCompareData = FALSE,

 SPECIAL_OPTIONS * pSO = NULL)

ePatType:

On the Write command, this determines the pattern that the library writes to the drive. On the Read

command, it is used to created the “expected pattern” (and if you set bCompareData to TRUE the

expected pattern will be compared to the actual data retrieved from the drive)

API: VCSCSIAddDiskWriteReadTest_Blocks
BOOL VCSCSIAddDiskWriteReadTest_Blocks(

 long lNumBlocksToWrite = -1,

 int nRandomOrSeq = 1,

 int nStartLBA = 0,

 ePATTERN_TYPE ePatType = eIncrementing,

 char * pstrPatternFile = NULL,

 BOOL bOverlayLBA = FALSE,

 BOOL bCompareData = FALSE,

 SPECIAL_OPTIONS * pSO = NULL)

lNumBlocksToWrite:

This parameter indicates how many blocks to write. Since every write is accompanied by a Read, the
actual number of blocks transferred to and from the drive will be twice the number you pass in for
lNumBlockstoWrite

API: VCSCSIAddDiskVerifyTest_Time
BOOL VCSCSIAddDiskVerifyTest_Time(

 int nNumberOfMinutes = 1,

 int nRandomOrSeq = 1,

 int nStartLBA = 0)

The above test issues the Verify scsi command (opcode 0x2F). Notice there is no transfer of data – this

means that the verify commands that the library sends out has the ByteChk bit set to 0. As such, the

verification criteria is determined by your mode page settings.

© Copyright 2011 SCSI Toolbox, LLC | Sales: 720.249.2641 | General: 303.972.2072

API: VCSCSIAddDiskVerifyTest_Blocks
BOOL VCSCSIAddDiskVerifyTest_Blocks(

 long lNumBlocksToVerify = -1,

 int nRandomOrSeq = 1,

 int nStartLBA = 0)

The above test issues the Verify scsi command (opcode 0x2F). Notice there is no transfer of data – this

means that the verify commands that the library sends out has the ByteChk bit set to 0. As such, the

verification criteria is determined by your mode page settings.

API: VCSCSIAddDiskWriteVerifyTest_Time
BOOL VCSCSIAddDiskWriteVerifyTest_Time(

 int nNumberOfMinutes = 1,

 int nRandomOrSeq = 1,

 int nStartLBA = 0,

 ePATTERN_TYPE ePatType = eIncrementing,

 char * pstrPatternFile = NULL,

 BOOL bOverlayLBA = FALSE,

 BOOL bByteCheck = FALSE)

bByteCheck:

Pass in TRUE for bByteCheck if you want the library to send out the “Write Verify” command with the

“Byte Check” bit set in the CDB that goes to the drive. Passing in bByteCheck as TRUE results in the data

being written to the drive, then the drive reading the data written to the drive and a byte-by-byte

comparision being done to insure the data is correct.

API: VCSCSIAddDiskWriteVerifyTest_Blocks
BOOL VCSCSIAddDiskWriteVerifyTest_Blocks(

 long lNumBlocksToVerify = -1,

 int nRandomOrSeq = 1,

 int nStartLBA = 0,

 ePATTERN_TYPE ePatType = eIncrementing,

 char * pstrPatternFile = NULL,

 BOOL bOverlayLBA = FALSE,

 BOOL bByteCheck = FALSE)

bByteCheck:

Pass in TRUE for bByteCheck if you want the library to send out the “Write Verify” command with the

“Byte Check” bit set in the CDB that goes to the drive. Passing in bByteCheck as TRUE results in the data

© Copyright 2011 SCSI Toolbox, LLC | Sales: 720.249.2641 | General: 303.972.2072

being written to the drive, then the drive reading the data written to the drive and a byte-by-byte

comparision being done to insure the data is correct.

API: VCSCSIAddDiskSeekTest_Time
BOOL VCSCSIAddDiskSeekTest_Time(

 int nNumberOfMinutes = 1,

 int nRandomOrSeq = 1,

 int nStartLBA = 0)

API: VCSCSIAddDiskSeekTest_Blocks
BOOL VCSCSIAddDiskSeekTest_Blocks(

 long lNumBlocksToWrite = -1,

 int nRandomOrSeq = 1,

 int nStartLBA = 0)

API: VCSCSIAddDiskFormatTest_SameSize
BOOL VCSCSIAddDiskFormatTest_SameSize()

As the name of the above API implies, this test formats the drive to the exact same blocksize as it is

currently (so, for example, if the drive’s current blocksize is 520 bytes then it re-formats the drive to

have blocksize 520).

API: VCSCSIAddDiskFormatTest_NewSize
BOOL VCSCSIAddDiskFormatTest_NewSize(int nNewBlockSize)

nNewBlockSize:

Pass in the new blocksize for the drive in the above parameter. For example, if the drive is currently at

blocksize 512, and you want to re-format the drive to have blocksize 520, then you pass in 520 for

nNewBlockSize

API: VCSCSIAddDiskFWDownloadTest
BOOL VCSCSIAddDiskFWDownload(char * pFirmwareFileName)

pFirmwareFileName:

Make sure you pass in the fully qualified path and filename for the firmware file

© Copyright 2011 SCSI Toolbox, LLC | Sales: 720.249.2641 | General: 303.972.2072

API: VCSCSIAddDiskSpinTest
BOOL VCSCSIAddDiskSpinTest(int nNumberOfMinutes = 1)

The “Spin” test powers down the drive, and then powers the drive back up over-and-over for

nNumberOfMinutes. The final state of the drive will be that the drive is powered up (so if the number of

minutes has elapsed and the test is in the middle of powering down the drive, it will complete the test

by powering up the drive).

API: VCSCSIAddDiskSynchronizeTest

BOOL VCSCSIAddDiskSynchronizeTest()

This test causes the library to not start the next test in the sequence until ALL drives have
completed all the tests prior to the synchronize test step. So for example, if the synchronize
test step is test #7 in your test sequence, and you have 2 drives running the test sequence, and
say Drive#2 finishes Step 6 but Drive#1 is still executing test#5, then Drive#2 will “wait” until
Drive#1 completes test#5 and test#6, and then both drives will start test#8 at the exact same
time. To say it another way, the “synchronize test” causes all drives to start the next test step
at the exact same time, waiting for slower drives to finish their testing.

API: VCSCSIAddDiskStreamingTest_Time

BOOL VCSCSIAddDiskStreamingTest_Time(

 int nNumberOfMinutes,

 int nStartLBA,

 enum ePATTERN_TYPE ePatType,

 char * pstrPatternFile,

 BOOL bOverlayLBA,

 int nPercentWriteVersusRead,

 int nMaxTransLen,

 BOOL bCompareData,

 SPECIAL_OPTIONS * pSO = NULL)

The “Streaming Test” is a test which combines Writes and Reads at a particular “distribution”. With the
“Streaming Test” you can have say 78% Writes and 22% Read. You have complete freedom to choose
your distribution by modifying the parameter nPercentWriteVersusRead. In terms of accessing the
drive, the access is sequential. So, for example, you may Write to LBA 0 with a transfer length of 0x4C,
then Write to LBA 0x4C with a transfer length of 0x71, then Read from LBA 0xBD with a transfer length
of 0x5A. The accesses are NOT random – it is sequential with Writes and Reads being done according to
the ratio you specify.

nPercentWriteVersusRead:

The parameter nPercentWriteVersusRead determines the distribution of Writes and Reads. If you pass
in the integer 78, then this will cause the library to issue 78% Writes with 22% Reads. If say you want

© Copyright 2011 SCSI Toolbox, LLC | Sales: 720.249.2641 | General: 303.972.2072

only 10% of the IOs to be Writes, then you would pass in 10 for nPercentWriteVersusRead (and so you

would necessarily get 90% Reads).

nMaxTransLen:

The default behavior of the Streaming Test is to transfer a random amount between 64 and 128 blocks.
But if you want to have the test do a random amount between 64 and say 100, then pass in 100 for
nMaxTransLen. Any value less than 64 causes every IO to be exactly nMaxTransLen.

API: VCSCSIAddDiskStreamingTest_Blocks

BOOL VCSCSIAddDiskStreamingTest_Blocks(

 long lNumberOfBlocks,

 int nStartLBA,

 enum ePATTERN_TYPE ePatType,

 char * pstrPatternFile,

 BOOL bOverlayLBA,

 int nPercentWriteVersusRead,

 int nMaxTransLen,

 BOOL bCompareData,

 SPECIAL_OPTIONS * pSO = NULL)

The “Streaming Test” is a test which combines Writes and Reads at a particular “distribution”. With the
“Streaming Test” you can have say 78% Writes and 22% Read. You have complete freedom to choose
your distribution by modifying the parameter nPercentWriteVersusRead. In terms of accessing the
drive, the access is sequential. So, for example, you may Write to LBA 0 with a transfer length of 0x4C,
then Write to LBA 0x4C with a transfer length of 0x71, then Read from LBA 0xBD with a transfer length
of 0x5A. The accesses are NOT random – it is sequential with Writes and Reads being done according to
the ratio you specify.

nPercentWriteVersusRead:

The parameter nPercentWriteVersusRead determines the distribution of Writes and Reads. If you pass
in the integer 78, then this will cause the library to issue 78% Writes with 22% Reads. If say you want
only 10% of the IOs to be Writes, then you would pass in 10 for nPercentWriteVersusRead (and so you

would necessarily get 90% Reads).

nMaxTransLen:

The default behavior of the Streaming Test is to transfer a random amount between 64 and 128 blocks.
But if you want to have the test do a random amount between 64 and say 100, then pass in 100 for
nMaxTransLen. Any value less than 64 causes every IO to be exactly nMaxTransLen.

API: VCSCSIAddDiskOLTPTest_Time

BOOL VCSCSIAddDiskOLTPTest_Time(

© Copyright 2011 SCSI Toolbox, LLC | Sales: 720.249.2641 | General: 303.972.2072

 int nNumberOfMinutes,

 int nStartLBA,

 enum ePATTERN_TYPE ePatType,

 char * pstrPatternFile,

 BOOL bOverlayLBA,

 int nPercentWriteVersusRead,

 int nMaxTransLen,

 BOOL bCompareData,

 SPECIAL_OPTIONS * pSO = NULL)

The “Online Transaction Processing Test” is designed to randomly access the drive, with mixing
Writes and Reads at a particular ratio. The transfer lengths are randomly chosen from between
4 and 32 blocks.

nPercentWriteVersusRead:

The parameter nPercentWriteVersusRead determines the distribution of Writes and Reads. If you pass
in the integer 78, then this will cause the library to issue 78% Writes with 22% Reads. If say you want
only 10% of the IOs to be Writes, then you would pass in 10 for nPercentWriteVersusRead (and so you

would necessarily get 90% Reads).

nMaxTransLen:

The default behavior of the “Online Transaction Processing Test” is to transfer a random amount
between 4 and 32 blocks. But if you want to have the test do a random amount between 4 and say 100,
then pass in 100 for nMaxTransLen. Any value less than 4 causes every IO to be exactly nMaxTransLen.

API: VCSCSIAddDiskOLTPTest_Blocks

BOOL VCSCSIAddDiskOLTPTest_Blocks(

 long lNumberOfBlocks,

 int nStartLBA,

 enum ePATTERN_TYPE ePatType,

 char * pstrPatternFile,

 BOOL bOverlayLBA,

 int nPercentWriteVersusRead,

 int nMaxTransLen,

 BOOL bCompareData,

 SPECIAL_OPTIONS * pSO = NULL)

nPercentWriteVersusRead:

The parameter nPercentWriteVersusRead determines the distribution of Writes and Reads. If you pass
in the integer 78, then this will cause the library to issue 78% Writes with 22% Reads. If say you want
only 10% of the IOs to be Writes, then you would pass in 10 for nPercentWriteVersusRead (and so you

would necessarily get 90% Reads).

© Copyright 2011 SCSI Toolbox, LLC | Sales: 720.249.2641 | General: 303.972.2072

nMaxTransLen:

The default behavior of the “Online Transaction Processing Test” is to transfer a random amount
between 4 and 32 blocks. But if you want to have the test do a random amount between 4 and say 100,
then pass in 100 for nMaxTransLen. Any value less than 4 causes every IO to be exactly nMaxTransLen.

API: VCSCSIAddDiskFileServerTest_Time

BOOL VCSCSIAddDiskFileServerTest_Time(

 int nNumberOfMinutes,

 int nStartLBA,

 enum ePATTERN_TYPE ePatType,

 char * pstrPatternFile,

 BOOL bOverlayLBA,

 int nPercentWriteVersusRead,

 int nMaxTransLen,

 BOOL bCompareData,

 SPECIAL_OPTIONS * pSO = NULL)

The “File Server Test” is designed to randomly access the drive with a mixture of Writes and
Reads. The transfer lengths are randomly chosen from between 8 and 128 blocks.

nPercentWriteVersusRead:

The parameter nPercentWriteVersusRead determines the distribution of Writes and Reads. If you pass
in the integer 78, then this will cause the library to issue 78% Writes with 22% Reads. If say you want
only 10% of the IOs to be Writes, then you would pass in 10 for nPercentWriteVersusRead (and so you

would necessarily get 90% Reads).

nMaxTransLen:

The default behavior of the “File Server Test” is to transfer a random amount between 8 and 128 blocks.
But if you want to have the test do a random amount between 8 and say 100, then pass in 100 for
nMaxTransLen. Any value less than 8 causes every IO to be exactly nMaxTransLen.

API: VCSCSIAddDiskFileServerTest_Blocks

BOOL VCSCSIAddDiskFileServerTest_Blocks(

 long lNumberOfBlocks,

 int nStartLBA,

 enum ePATTERN_TYPE ePatType,

 char * pstrPatternFile,

 BOOL bOverlayLBA,

 int nPercentWriteVersusRead,

 int nMaxTransLen,

 BOOL bCompareData,

© Copyright 2011 SCSI Toolbox, LLC | Sales: 720.249.2641 | General: 303.972.2072

 SPECIAL_OPTIONS * pSO = NULL)

The “File Server Test” is designed to randomly access the drive with a mixture of Writes and
Reads. The transfer lengths are randomly chosen from between 8 and 128 blocks.

nPercentWriteVersusRead:

The parameter nPercentWriteVersusRead determines the distribution of Writes and Reads. If you pass
in the integer 78, then this will cause the library to issue 78% Writes with 22% Reads. If say you want
only 10% of the IOs to be Writes, then you would pass in 10 for nPercentWriteVersusRead (and so you

would necessarily get 90% Reads).

nMaxTransLen:

The default behavior of the “File Server Test” is to transfer a random amount between 8 and 128 blocks.
But if you want to have the test do a random amount between 8 and say 100, then pass in 100 for
nMaxTransLen. Any value less than 8 causes every IO to be exactly nMaxTransLen.

API: VCSCSIAddDiskWebServerTest_Time

BOOL VCSCSIAddDiskWebServerTest_Time(int nNumberOfMinutes,
 int nStartLBA,
 enum ePATTERN_TYPE ePatType,
 char * pstrPatternFile,
 BOOL bOverlayLBA,
 int nMaxTransLen,
 BOOL bCompareData,
 SPECIAL_OPTIONS * pSO = NULL)

The “Web Server Test” is designed to randomly access the drive with Reads. The transfer
lengths are randomly chosen from between 1 and 1024 blocks.

nMaxTransLen:

The default behavior of the “Web Server Test” is to transfer a random amount between 1 and 1024
blocks. But if you want to have the test do a random amount between 1 and say 100, then pass in 100
for nMaxTransLen.

API: VCSCSIAddDiskWebServerTest_Blocks

BOOL VCSCSIAddDiskWebServerTest_Blocks(long lNumberOfBlocks,
 int nStartLBA,
 enum ePATTERN_TYPE ePatType,
 char * pstrPatternFile,
 BOOL bOverlayLBA,

© Copyright 2011 SCSI Toolbox, LLC | Sales: 720.249.2641 | General: 303.972.2072

 int nMaxTransLen,
 BOOL bCompareData,
 SPECIAL_OPTIONS * pSO = NULL)

The “Web Server Test” is designed to randomly access the drive with Reads. The transfer
lengths are randomly chosen from between 1 and 1024 blocks.

nMaxTransLen:

The default behavior of the “Web Server Test” is to transfer a random amount between 1 and 1024
blocks. But if you want to have the test do a random amount between 1 and say 100, then pass in 100
for nMaxTransLen.

API: VCSCSIAddDiskWorkStationTest_Time

BOOL VCSCSIAddDiskWorkStationTest_Time(int nNumberOfMinutes,
 int nStartLBA,
 enum ePATTERN_TYPE ePatType,
 char * pstrPatternFile,
 BOOL bOverlayLBA,
 int nPercentWriteVersusRead,
 int nMaxTransLen,
 BOOL bCompareData,
 SPECIAL_OPTIONS * pSO = NULL)

The “Work Station Test” is our most complex test in that it is designed to randomly access the
drive 80% of the time, and then sequential 20% of the time. What this means is that over a
long run of the “Work Station Test”, 80% of the time the LBA for the next IO will be chosen at
random, but then 20% of the time the LBA for the next IO will be “next to” or “adjacent” to the
previous IO. By way of an example, the LBAs might be 0x125AD, 0x0A437, 0xAFD007,
0xAFD017. Notice the first 3 IOs the LBAs are random, but then the 4th IO (with LBA 0xAFD017)
is right next to the previous IO (which has LBA 0xAFD007). In addition to the mixture of the
random and sequential access of the drive, the test also has a mixture of Writes and Reads (the
distribution of Writes and Reads is determined by the parameter nPercentWriteVersusRead.
The transfer lengths are randomly chosen from between 1 and 32 blocks.

nPercentWriteVersusRead:

The parameter nPercentWriteVersusRead determines the distribution of Writes and Reads. If you pass
in the integer 78, then this will cause the library to issue 78% Writes with 22% Reads. If say you want
only 10% of the IOs to be Writes, then you would pass in 10 for nPercentWriteVersusRead (and so you

would necessarily get 90% Reads).

nMaxTransLen:

© Copyright 2011 SCSI Toolbox, LLC | Sales: 720.249.2641 | General: 303.972.2072

The default behavior of the “Work Station Test” is to transfer a random amount between 1 and 32
blocks. But if you want to have the test do a random amount between 1 and say 10, then pass in 10 for
nMaxTransLen.

API: VCSCSIAddDiskWorkStationTest_Blocks

BOOL VCSCSIAddDiskWorkStationTest_Blocks(long lNumberOfBlocks,
 int nStartLBA,
 enum ePATTERN_TYPE ePatType,
 char * pstrPatternFile,
 BOOL bOverlayLBA,
 int nPercentWriteVersusRead,
 int nMaxTransLen,
 BOOL bCompareData,
 SPECIAL_OPTIONS * pSO = NULL)

The “Work Station Test” is our most complex test in that it is designed to randomly access the
drive 80% of the time, and then sequential 20% of the time. What this means is that over a
long run of the “Work Station Test”, 80% of the time the LBA for the next IO will be chosen at
random, but then 20% of the time the LBA for the next IO will be “next to” or “adjacent” to the
previous IO. By way of an example, the LBAs might be 0x125AD, 0x0A437, 0xAFD007,
0xAFD017. Notice the first 3 IOs the LBAs are random, but then the 4th IO (with LBA 0xAFD017)
is right next to the previous IO (which has LBA 0xAFD007). In addition to the mixture of the
random and sequential access of the drive, the test also has a mixture of Writes and Reads (the
distribution of Writes and Reads is determined by the parameter nPercentWriteVersusRead.
The transfer lengths are randomly chosen from between 1 and 32 blocks.

nPercentWriteVersusRead:

The parameter nPercentWriteVersusRead determines the distribution of Writes and Reads. If you pass
in the integer 78, then this will cause the library to issue 78% Writes with 22% Reads. If say you want
only 10% of the IOs to be Writes, then you would pass in 10 for nPercentWriteVersusRead (and so you

would necessarily get 90% Reads).

nMaxTransLen:

The default behavior of the “Work Station Test” is to transfer a random amount between 1 and 32
blocks. But if you want to have the test do a random amount between 1 and say 10, then pass in 10 for
nMaxTransLen.

API: VCSCSIAddDiskClearLogPagesTest

BOOL VCSCSIAddDiskClearLogPagesTest()

© Copyright 2011 SCSI Toolbox, LLC | Sales: 720.249.2641 | General: 303.972.2072

This test clears all the log pages maintained by the drive

API: VCSCSIAddDiskSaveLogPagesTest

BOOL VCSCSIAddDiskSaveLogPagesTest()

This test reads all the log pages maintained by the drive and stores this data into the drive’s
logfile (this logfile is created by the library and has the format “HA-Target-Lun-
SerialNumber.Log”). The format of the data stored in the logfile will be “Log Page Number, Log
Page Parameter, Data”.

API: VCSCSIAddDiskDSTTest

BOOL VCSCSIAddDiskDSTTest()

This test runs the Short Drive Self Test. This is a self test done by the drive itself – the library
does NOT determine what is performed in the Drive Self Test (the library simply initiates the
Drive Self Test and waits for the test to complete).

API: VCSCSIAddDiskDelayTest

BOOL VCSCSIAddDiskDelayTest(int nNumSecondsToDelay)

This test simply “delays” the testing on a drive by the number of seconds you specify in
nNumSecondsToDelay.

API: VCSCSIAddDiskAdjTrkIntfTest

BOOL VCSCSIAddDiskAdjTrkIntfTest(int nTargetCyl,int nTargetHead,
 int nNumWritesToMiddleTrk)

The “Adjacent Track Interference Test” is designed to test the effects on a track due to the vibrations on

neighboring tracks. Adjacent tracks are considered to be adjacent tracks on the same platter (NOT

adjacent tracks on the same cylinder). So given a track, which is uniquely characterized by its

Cylinder:Head values, the track “to the left” is (Cylinder – 1):Head, while the track to the right is

(Cylinder + 1):Head. Call these 3 tracks Tr_L, Tr_M, Tr_R. We write “All Zeroes” to all 3 tracks. Then we

write a different pattern 30,000 times to Tr_M. After writing track Tr_M 30,000 times, we then look to

track Tr_L, and Tr_R to see if the vibration on the middle track had any effect on the left and right tracks.

© Copyright 2011 SCSI Toolbox, LLC | Sales: 720.249.2641 | General: 303.972.2072

If there was no effect then the pattern on these two tracks would still be “All Zeroes”. If there is all

zeroes, the test succeeds. If any bit is different, the test fails.

nTargetCyl:

This is the “Cylinder” value. Since the library needs to go to the track to the left, which means we must

subtract 1 from the “Cylinder” value, the “Cylinder” value must be atleast 1.

nTargetHead:

This is which “platter” on the drive you want tested. As a general rule of thumb, since many drives only

have around 12 platters, this value should be fairly small.

API: VCSCSIAddDiskSMARTTest

BOOL VCSCSIAddDiskSMARTTest(DMM_AtaSmartData * pAtaSmartData)

This test allows you to compare the SMART attributes to values you store in the
DMM_AtaSmartData data structure. There structure has the following fields:

int HBAType;

int PercentOfThreshold;

int Param1;

int Param2;

int Param3;

int Param4;

int Param5;

int RAW1;

int RAW2;

int RAW3;

int RAW4;

int RAW5;

bool ThresholdChecked;

bool ParamsChecked;

bool Param1Checked;

bool Param2Checked;

bool Param3Checked;

bool Param4Checked;

bool Param5Checked;

int P1CompareType;

int P2CompareType;

int P3CompareType;

int P4CompareType;

int P5CompareType;

© Copyright 2011 SCSI Toolbox, LLC | Sales: 720.249.2641 | General: 303.972.2072

API: VCSCSIAddDiskSATAFWDLTest

BOOL VCSCSIAddDiskSATAFWDLTest(char * pFirmwareFileName)

This test allows you to download firmware to a SATA drive. As the normal firmware download
does not work on SATA drives, you must use this function to do a firmware download to your
SATA drive (that is do NOT use VCSCSIAddDiskFWDownloadTest).

API: VCSCSIAddDiskSATAinfoTest

BOOL VCSCSIAddDiskSATAinfoTest()

This test retrieves the SATA IDENTIFY information from the SATA drive and stores this
information in the drive’s logfile.

Getting the Status of a Test

API: VCSCSIGetDiskTestStatus

eTEST_STATUS VCSCSIGetDiskTestStatus(int nHA,int nTid,int nLun,int nTestNumber)

nTestNumber:

The nTestNumber parameter is 0-based. This means that the first test you add to your sequence has

value 0 for nTestNumber.

Return Value:

The possible return values are:

0 (or eTestInProgress)
1 (or eCompleteOnSuccess)
2 (or eCompleteOnFailure)
3 (or eTestNotStartedYet)
4 (or eTestIsPaused)
5 (or eTestStopped)
6 (or eErrorOnParamsPassed)
7 (or eMisCompare)
8 (or eInvalidBlock)
9 (or ePendingIOOutstanding)

© Copyright 2011 SCSI Toolbox, LLC | Sales: 720.249.2641 | General: 303.972.2072

10 (or eUnknownStatus)

These values need some more discussion.

eTestInProgress: This means that when you made the call to

VCSCSIGetDiskTestStatus the library was currently executing that test on your drive.

eCompleteOnSuccess: The test has completed and it completed successfully

eCompleteOnFailure: The test has completed and it failed. You can get more information on what

caused the test to fail by calling VCSCSIGetDiskTestStatusWData to get any sense information or you can

call VCSCSIGetDiskTestStatusWStruct. You can also look in the logfile that is created (the filename has

format “HA-Target-Lun-SerialNumber.Log”, for example 04-014-000-2A0007F.Log).

eTestNotStartedYet: This means that the test has not been started yet. For example, if you have 5 tests

in your test sequence, and test #2 is currently executing and you ask for the status of test #4, the library

will return eTestNotStartedYet.

eTestIsPaused: This means you called VCSCSIPauseDiskTest to pause the test and it is currently in the

“pause state”. You must call VCSCSIResumeDiskTest to resume the test

eTestStopped: This means you called VCSCSIStopDiskTest to stop the test. Once you stop a test, there is

no way to resume this test

eErrorOnParamsPassed: This means one of the parameters you passed in for the test was invalid and the

test will not execute. An example of how you can get eErrorOnParamsPassed is the High Capacity of the

drive is only 0x05000000 and you pass in a Start Block of 0x06000000.

eMisCompare: This means that data retrieved from the drive and not what the library was expecting.

The logfile will have more information about which block has the incorrect information, and what was

the expected and actual data.

API: VCSCSIGetDiskTestStatusWData

eTEST_STATUS VCSCSIGetDiskTestStatusWData(int nHA,int nTid,int nLun,int nTestNumber,BYTE *

pSenseBuf,int nSenseBufLen)

nSenseBufLen:

The nSenseBufLen parameter is the total size of your buffer pSenseBuf. It should have 128 BYTEs of

space. BUT if you only want say 18 bytes of sense data, pass in nSenseBufLen equal to 18 and the library

will only store at most 18 bytes in your buffer.

© Copyright 2011 SCSI Toolbox, LLC | Sales: 720.249.2641 | General: 303.972.2072

 API: VCSCSIGetDiskTestStatusWStruct

eTEST_STATUS VCSCSIGetDiskTestStatusStruct(int nHA,int nTid,int nLun,int
nTestNumber,TEST_PROGRESS_INFO * pTestProgressInfo);

You call VCSCSIGetDiskTestStatusWStruct to get information about the test as it is progressing. The
types of information you can retrieve from this API are, for example, “how much longer is the test going
to take to finish”, “how many IOs have been issued”, “how much data has been transferred by the test”.

pTestProgressInfo:

The fields in the TEST_PROGRESS_INFO structure are as follows:

 int nSizeOfThisStruct;
 DWORD dwTestStatus;
 int nNumBlocksTransSoFar;
 double dNumBytesTransSoFar;
 time_t testStartTime;
 time_t testEndTime;
 time_t testPauseTime;
 int nNumTotBlocksToTransfer;
 int nTimeRunning;
 int nTimeRemaining;
 BYTE cCDBOnFailure[16];
 __int64 i64NumIOIssued;
 BYTE cMiscompareInfoExp[16];
 BYTE cMiscompareInfoAct[16];
 int nMiscompareInfoOff;
 __int64 i64MiscompareLBA;

Notice that in addition to being able to get information about the test as it is proceeding, you
also call this API to get error information. For example, if a miscompare occurred, you call this
API to get the expected data (in field cMiscompareInfoExp), the actual data retrieved from the
drive (this is field cMiscompareInfoAct), and where in the block of data does the miscompare
start (this is stored in field nMiscompareInfoOff).

Additional APIs: Pausing, Stopping, Resuming

API: VCSCSIPauseDiskTest

BOOL VCSCSIPauseDiskTest(int nHA,int nTid,int nLun,int nTestNumber)

Return Value:

© Copyright 2011 SCSI Toolbox, LLC | Sales: 720.249.2641 | General: 303.972.2072

Returns TRUE if the test was successfully paused

Returns FALSE if the test could not be paused (either because the test has not started, or the test has

completed, or there is no nTestNumber test)

API: VCSCSIResumeDiskTest

BOOL VCSCSIResumeDiskTest(int nHA,int nTid,int nLun,int nTestNumber)

Return Value:

Returns TRUE if the test was successfully resumed

Returns FALSE if the test could not be resumed (either because the test has not started, or the test has

completed, or the test was not in a pause state, or there is no nTestNumber test)

API: VCSCSIStopDiskTest

BOOL VCSCSIStopDiskTest(int nHA,int nTid,int nLun,int nTestNumber)

Return Value:

Returns TRUE if the test was successfully stopped

Returns FALSE if the test could not be stopped (either because the test has not started, or the test has

completed, or there is no nTestNumber test)

API: VCSCSIStopAllDiskTest

BOOL VCSCSIStopAllDiskTest()

This API stops the current test that is executing, and also prevents all other tests from running. It is

different from VCSCSIStopDiskTest in that it stops all testing on all drives (whereas VCSCSIStopDiskTest

stops only a single test on a single drive).

© Copyright 2011 SCSI Toolbox, LLC | Sales: 720.249.2641 | General: 303.972.2072

EXAMPLE CODE
The following example outlines the normal usage of the APIs contained in this document. You should

use it as a guideline for developing for own application using the VCPSSL library. The general outline of

any application using VCPSSL is as follows:

1. Initialize the library by calling VCSCSIPrepareForNewDiskTestSequence

2. Add the disk drives to the pool of drives that the tests will be run against by calling

VCSCSIAddDiskDeviceToBeTested

3. Add all the tests to be performed by calling one of the “VCSCSIAddDisknnnnnnnTest”

4. Start the testing by calling VCSCSIStartDiskTestSequence

5. Determine the status of the tests by calling VCSCSIGetDiskTestStatus

int nHA,nTid,nLun;

eTEST_STATUS eTestStatus;

//STEP 1) Initialize the library

VCSCSIPrepareForNewDiskTestSequence();

//STEP 2) Add devices to be tested. In this example we are just going

//to add 1 drive, but if you need to add say 10 drives then you need

//to have 10 calls to VCSCSIAddDiskDeviceToBeTested

nHA = 4;

nTid = 5;

nLun = 0;

bSuccess = VCSCSIAddDiskDeviceToBeTested(nHA,nTid,nLun);

//STEP 3)

VCSCSIAddDiskWriteTest_Blocks(-1, //Write the entire drive

 1, //Sequential access

 0, //Start LBA

 eIncrementing, //pattern type

 NULL, //Pattern File,

 TRUE //Overlay LBA);

VCSCSIAddDiskWorkStationTest_Blocks(50000000, //Number of blocks

 0, //Start LBA

 eIncrementing, //Pattern

 NULL, //Pattern File

 TRUE, //Overlay LBA

 65, //65% Writes

 128, //Max Transfer Len

 TRUE, //Compare Data

 NULL); //Special Options

//STEP 4)

VCSCSIStartDiskTestSequence();

//STEP 5)

BOOL bAllDrvDone;

© Copyright 2011 SCSI Toolbox, LLC | Sales: 720.249.2641 | General: 303.972.2072

eTEST_STATUS eTestStatus;

TEST_PROGRESS_INFO sTestProgressInfo;

int nNumTests = 2; //We added 2 tests

int nNumDrvDone;

int nNumDrvsInTest = 1; //We are testing 1 drive

bAddDrvDone = FALSE;

while (bAllDrvDone == FALSE)

{

 Sleep(1000); //Check status every once-per-second

 VCSCSICMQ(); //Make sure Window’s messages are being processed

 nNumDrvDone = 0;

 //The below code checks the status of each drive – in our

 //example we are only testing 1 drive, but if you are testing

 //more than 1 drive you would have a “for” loop checking each

 //drive

 //Check the status of the last test

 eTestStatus = VCSCSIGetDiskTestStatus(nHA,nTid,nLun,

 nNumTests-1);

 if (eTestStatus != eTestNotStartedYet &&

 eTestStatus != eTestInProgress)

 {

 //The drive has finished last test

 nNumDrvDone++;

 }

 if (nNumDrvDone == nNumDrvsInTest)

 {

 bAllDrvDone = TRUE;

 }

}

