

SCSI TOOLBOX, LLC
Command Probability Sequencer

© Copyright 2010 SCSI Toolbox LLC
Sales: 720.249.2641
General: 303.972.2072

Contents
What is the Command Probability Sequencer ..3

First Example ..4

Second Example: Writing Every Even LBA With An Incrementing Pattern and Every

Odd LBA with a Decrementing Pattern ..6

Third Example: SENDING SPECIALIZE DATA TO THE DRIVE8

DEFINITIONS OF THE PARAMETERS FOR EACH COMMAND:9

RETURN CODES AND POSSIBLE PROBLEMS WITH USING

VCSCSIAddDiskComProbSeq API:...11

© Copyright 2010 SCSI Toolbox LLC
Sales: 720.249.2641
General: 303.972.2072

What is the Command Probability Sequencer
The Command Probability Sequencer (CPS) is a new API in VCPSSL v8.2.0 that allows you to
define a set of commands that will be issued; each command has a specified probability it will be
chosen for execution. This new API is quite complex and has many features – we will introduce
the features by way of examples.

© Copyright 2010 SCSI Toolbox LLC
Sales: 720.249.2641
General: 303.972.2072

First Example
As a first example, suppose you wanted to issue a lot of writes and reads, but every now and
then issue a different command (like Log Sense command for example). And suppose you have
a further requirement that this Log Sense command be issue about every 1000th I/O. The
Command Probability Sequencer is perfect for implementing the above test scenario. Although
the coding example below at first looks daunting, but for now focus on the following items: we
are setting up three user-defined commands “Write”, “Read”, and “Log Sense” and we need to
specify such information as whether data is going to/from the drive (the “nDataDir” field), and
how much data needs to be transfer (the “nTransferLen” field). Here’s the code for our first
example - focus on the lines of code in RED which have the “nDataDir” and “nTransferLength”
parameters, and the actual definition of the commands.

 const int c_nLenOfArray = 3;
 DMM_UserDefinedCDB arrOfCDB[c_nLenOfArray];
 double arrOfProb[c_nLenOfArray];
 int nIndex;
 const long c_lNumberOfIOToIssue = 10000;

 //Set up the “Write” command (Write is opcode 0x2A)
 BYTE cCDB0[] = {0x2A,0,0,0,0,0,0,0,1,0};
 nIndex = 0;
 memcpy(arrOfCDB[nIndex].cCDBBytes,cCDB0,10);
 arrOfCDB[nIndex].nCDBLength = 10;
 arrOfCDB[nIndex].nDataDir = 0;
 arrOfCDB[nIndex].nTransferLength = 512;

 //Set up the “Read” command (Read opcode is 0x28)
 BYTE cCDB1[] = {0x28,0,0,0,0,0,0,0,1,0};
 nIndex = 1;
 memcpy(arrOfCDB[nIndex].cCDBBytes,cCDB1,10);
 arrOfCDB[nIndex].nCDBLength = 10;
 arrOfCDB[nIndex].nDataDir = 1;
 arrOfCDB[nIndex].nTransferLength = 512;

 //Set up the “Log Sense” command (Log Sense opcode is 0x4D)
 BYTE cCDB2[] = {0x4D,0,0x40,0,0,0,0,0,0,0x80,0};
 nIndex = 2;
 memcpy(arrOfCDB[nIndex].cCDBBytes,cCDB2,10);
 arrOfCDB[nIndex].nCDBLength = 10;
 arrOfCDB[nIndex].nDataDir = 1;
 arrOfCDB[nIndex].nTransferLength = 128;

© Copyright 2010 SCSI Toolbox LLC
Sales: 720.249.2641
General: 303.972.2072

 //Now define the probabilities for each of the three commands
 //“Write”, “Read”, “Log Sense”
 arrOfProb[0] = 0.4995; //this is the probability for the “Write” command
 arrOfProb[1] = 0.4995; //this is the probability for the “Read” command
 arrOfProb[2] = 0.001; //.001 probability means the Log Sense command will be issued
 //with probability .001 (i.e. every 1000th I/O)

 VCSCSIAddDiskComProbSeqTest(arrOfCDB,
 arrOfProb,
 c_nLenOfArray,
 c_lNumberOfIOToIssue);

In the example above our set of commands to issue is 3 (hence we set c_nLenOfArry to 3) and
the number of commands to issue is 10000 (hence we set c_lNumberOfIOToIssue to 10000).
Notice also in the call to API VCSCSIAddDiskComProbSeqTest we pass in two arrays: the first is
the sequence of commands, and the second is the sequence containing the probabilities for
these commands.

NOTE: The sum of your probabilities must be exactly 1.0 (or 100%). Notice in our example the
sum of the probabilities .4995, .4995, and .001 is exactly 1.0

Here is a BAM (Bus Analyzer Module) output from the above test:

As you can see in the trace, there are Write, Log Sense, and Read commands. In the lower
portion of the trace, on the I/O Statistics page, it shows the number and type of commands that
went out. There were 5019 Read commands, 4966 Write commands, and 15 Log Sense
commands (note that 5019 + 4966 + 15 = 10000, which is the number of commands we
specified to CPS to issue). From this particular run, we see that the Read commands formed

© Copyright 2010 SCSI Toolbox LLC
Sales: 720.249.2641
General: 303.972.2072

5019/10000 = 50.19% of the commands, the Write commands formed 4966/10000 = 49.66% of
the commands, and the Log Sense commands formed 15/10000 = 0.15%. These percentages
are almost exactly the probabilities we specified to CPS.

Second Example: Writing Every Even LBA With An
Incrementing Pattern and Every Odd LBA with a
Decrementing Pattern

In this example we will cover two more features of the CPS – namely how to set the data
pattern, and how to adjust your write and read (and other commands) automatically. To see
why you would want to adjust the write command, suppose for the moment you did not adjust
the command. Then every single time we issued the command we would be writing to the exact
same location on the drive (in example 1, we would be writing to LBA 0 every single time). To
allow adjusting the location the command writes to, we have introduced the “nGap” parameter.
The nGap parameter tells CPS how much to adjust the location of the write command. For
example, if nGap is 7 then successive writes would go to LBAs 0, 7, 14, 21, and so forth.

In order to write every even LBA (i.e. the LBAs 0, 2, 4, 6, 8, 10, ….) we will need nGap to be
exactly 2.

So here’s how to see up the above type of test – focus on the lines of code in RED which have
the “eTestPattern” and “nGap” parameters.

 const int c_nLenOfArray = 2;
 DMM_UserDefinedCDB arrOfCDB[c_nLenOfArray];
 double arrOfProb[c_nLenOfArray];
 int nIndex;
 const long c_lNumberOfIOToIssue = 10000;

 //Set up the “Write” command that writes to even LBA, with Incrementing pattern
 BYTE cCDB0[] = {0x2A,0,0,0,0,0,0,0,1,0};
 nIndex = 0;
 memcpy(arrOfCDB[nIndex].cCDBBytes,cCDB0,10);
 arrOfCDB[nIndex].nCDBLength = 10;
 arrOfCDB[nIndex].nDataDir = 0;
 arrOfCDB[nIndex].nTransferLength = 512;
 arrOfCDB[nIndex].eTestPattern = eIncrementing;
 arrOfCDB[nIndex].nGap = 2;

 //Set up the “Write” command that writes to odd LBA, with Decrementing pattern
 BYTE cCDB1[] = {0x2A,0,0,0,0,1,0,0,1,0};
 nIndex = 1;
 memcpy(arrOfCDB[nIndex].cCDBBytes,cCDB1,10);

© Copyright 2010 SCSI Toolbox LLC
Sales: 720.249.2641
General: 303.972.2072

 arrOfCDB[nIndex].nCDBLength = 10;
 arrOfCDB[nIndex].nDataDir = 0;
 arrOfCDB[nIndex].nTransferLength = 512;
 arrOfCDB[nIndex].eTestPattern = eDecrementing;
 arrOfCDB[nIndex].nGap = 2;

 //Now define the probabilities for these two commands. There’s no reason you have
 //to make the probabilities the same.
 arrOfProb*0+ = 0.71; //71% of the time we’ll be writing to the even LBA
 arrOfProb*1+ = 0.29; //29% of the time we’ll be writing to the odd LBA

 VCSCSIAddDiskComProbSeqTest(arrOfCDB,
 arrOfProb,
 c_nLenOfArray,
 c_lNumberOfIOToIssue);

Here is a BAM (Bus Analyzer Module) output from the above test:

Notice in the BAM trace, the first Write command writes a decrementing pattern (to LBA 1),
while the next three Write commands write an incrementing pattern (to LBA 0, 2, 4). Notice the
“spacing” between the Write commands with incrementing pattern – they are exactly two
blocks apart, which is exactly the nGap value we specified to CPS.

© Copyright 2010 SCSI Toolbox LLC
Sales: 720.249.2641
General: 303.972.2072

Third Example: SENDING SPECIALIZE DATA TO THE DRIVE
In this third example we show you how to send unique data to a drive in a “Mode Select”
command. We will be setting the AWRE (“Automatic Write Reallocation Enabled” bit to 0 on the
“Error Recovery” mode page). This Mode Select will be done only with probability one-tenth of
one percent (i.e. probability .001).

 const int c_nLenOfArray = 3;
 DMM_UserDefinedCDB arrOfCDB[c_nLenOfArray];
 double arrOfProb[c_nLenOfArray];
 int nIndex;
 const long c_lNumberOfIOToIssue = 10000;

 //Do a Mode-Select (Mode-Select has opcode 0x15)
 BYTE cCDB0[] = {0x15,0x11,0,0,0x18,0};
 BYTE cModeSelectBuffer[24] = {0,0,0,0x08,0,0,0,0,0,0,2,0,1,0x0a,4,1,0,0,0,0,1,0,0,0};
 nIndex = 0;
 memcpy(arrOfCDB[nIndex].cCDBBytes,cCDB0,6);
 arrOfCDB[nIndex].nCDBLength = 6;
 arrOfCDB[nIndex].nDataDir = 0;
 arrOfCDB[nIndex].nTransferLength = 24;
 arrOfCDB[nIndex].pPayloadDataToDrive = &cModeSelectBuffer[0];

 //Set up the “Write” command (Write is opcode 0x2A)
 BYTE cCDB1[] = {0x2A,0,0,0,0,0,0,0,1,0};
 nIndex = 1;
 memcpy(arrOfCDB[nIndex].cCDBBytes,cCDB1,10);
 arrOfCDB[nIndex].nCDBLength = 10;
 arrOfCDB[nIndex].nDataDir = 0;
 arrOfCDB[nIndex].nTransferLength = 512;

 //Set up the “Read” command (Read opcode is 0x28)
 BYTE cCDB2[] = {0x28,0,0,0,0,0,0,0,1,0};
 nIndex = 2;
 memcpy(arrOfCDB[nIndex].cCDBBytes,cCDB2,10);
 arrOfCDB[nIndex].nCDBLength = 10;
 arrOfCDB[nIndex].nDataDir = 1;
 arrOfCDB[nIndex].nTransferLength = 512;

//Now define the probabilities for these two commands. There’s no reason you have
 //to make the probabilities the same.
 arrOfProb[0] = 0.001; // .1% of the time we issue mode-select
 arrOfProb[1] = 0.4995;
 arrOfProb[2] = 0.4995;

© Copyright 2010 SCSI Toolbox LLC
Sales: 720.249.2641
General: 303.972.2072

 VCSCSIAddDiskComProbSeqTest(arrOfCDB,
 arrOfProb,
 c_nLenOfArray,
 c_lNumberOfIOToIssue);

Here is a BAM (Bus Analyzer Module) output from the above test:

DEFINITIONS OF THE PARAMETERS FOR EACH COMMAND:

Here is the data structure that you must fill out for each command you want to set up for CPS:

struct _DMM_UserDefinedCDB
{
 BOOL bValid;
 eUSER_DEFINED_TYPES eUserDefinedType;
 char cCDBBytes[16];
 int nCDBLength;
 int nDataDir;
 int nTimeout;
 int nTransferLength;
 BYTE * pPayloadDataToDrive;

© Copyright 2010 SCSI Toolbox LLC
Sales: 720.249.2641
General: 303.972.2072

 int nAmtDataToLogfile;
 char cDataOutFile[MAX_PATH];
 ePATTERN_TYPE eTestPattern;
 BOOL bCompare;
 int nGap;
 int nSeed;
}

bValid: Set it to TRUE

eUserDefinedType: Set it to eScsiCDB

cCDBBytes: copy the particular command to this

field (must be 16 bytes or less)

nCDBLength: set this to the length of your command

nDataDir: set this to 0 if data is going TO the

drive, and set it to 1 if data is coming

BACK from the drive. NOTE: If no

data is being transferred, set it to 0. 0 is

the default value

nTimeout: set this to the desired timeout for the

command (default value is 30)

nTransferLength: set this to how much data is to be

transferred. If no data is being

transferred then set this field to 0

pPayloadDataToDrive: set this pointer to the starting address

of the buffer containing the data to be

shipped to the drive. If there is no data

to be shipped to the drive then set this

field to NULL (which is the default

value).

cDataOutFile: set byte 0 to „\0‟ – this is the default

eTestPattern: set this field to the desired pattern.

For a list of available patterns see

© Copyright 2010 SCSI Toolbox LLC
Sales: 720.249.2641
General: 303.972.2072

VCPSSLImports.h and enum

ePATTERN_TYPE.

bCompare: Set this field to TRUE if the command

is receiving data from the drive (for

example a “Read” command).

Otherwise set it to FALSE (which is

the default). The data coming back

from the drive will be compared to

whatever is in the eTestPattern field

nGap: for Write and Read commands, set this

field to the number of blocks you want

between each successive commands

RETURN CODES AND POSSIBLE PROBLEMS WITH USING
VCSCSIAddDiskComProbSeq API:

This API returns TRUE to mean adding of the test to your sequence was done;
It returns FALSE if any problem occurred.

Reasons for getting a return code of FALSE from API VCSCSIAddDiskComProbSeq:

1. The number of commands in your sequence is too long. Resolution: Make sure there
are at most 1000 commands in your sequence

2. The sum of the probabilities for all your commands does not equal 1.0. Resolution:
Make sure that the probabilities do in fact add up to 1.0 – it is very easy to “misplace” a
decimal point or incorrectly input numbers. Also, input the numbers as, for example,
.25 (NOT as 25).

