SCSI TOOLBOX, LLC
Using SAT to access SATA drives

Contents

WAE S SAT? ..ttt e e s e e s b e e s sab e e s st e s sabe e senbeesannee e 3
How do | know that | Nneed £0 USE SAT? ...t 4
Does my controller card SUPPOIt SAT? .o uiiiiiiiiiee et e s e e s srae e e e saaeee s 5
VA [0 g o] (SRR (=TS ffoToT 1 o1 s o - T s Tc I PP 6
Issuing the ATA SMART COMMANG......uiiiiiiiiieeiiiiieeeeritee e eeee e e e s e e e s sae e e e ssaeeeessnasaeeesssnaeeeas 8
Details of defining an IDENTIFY COMMANGccoouiiieiiiiiiie e 10
Details of defining @ SMART COMMANooviiiiiiiieiciiece et 13

(000] ool 18 1 1o o TR 13

What is SAT?

SAT (SCSI->ATA Translation) is a mechanism whereby ATA task register commands may be sent
to a device which is seen by the operating system as a SCSI device. This is most often the case
when SATA drives are connected to an add-in PCl bus type of SATA controller card. Even though
the card is a SATA controller in most cases Windows will see the controller as if it were a SCSI

HBA, and so will not allow you to issue ATA task register level commands to the connected
devices.

Documentation on SAT can be found at the T10.org site http://www.t10.org/drafts.htm#sat3

In short, SAT uses a 12 or 16 byte SCSI cdb which contains an embedded ATA task register
command.

http://www.t10.org/drafts.htm#sat3

How do I know that I need to use SAT?

If your controller is seen by Windows as an ATA/IDE type of controller than you do not need to
use SAT, you can simply issue normal ATA task register commands. How do you know what type
of controller you have?

You can confirm how your operating system views your controller scheme by using Device
Manager as shown below — note that the only drives that will be able to process actual ATA task
register commands must be attached to a controller that Windows sees as an IDE ATA/ATAPI
controller

In the example below, the second controller (Adaptec Serial ATA 1205A Host Controller) might
be able to use SAT to send and ATA command to an attached drive.

E;, Device Manager !EI E

File Action Wew Help

= B S 2E A

SR} TE-FCl-
: J Corputer
"‘i" Disk drives Drives attached to
é Display adapters these controllers
[+ ok DYDJCD-ROM drives will be testable
{@ Floppy disk controllers
@ Floppy disk drives
=12 IDE ATAJATAPT contrallers
{@ Intel{R) 32501EE Ultra ATA Storage Controllers

=4 Primary IDE Channel

H-gm Keyboards

---"" Mice and other pointing devices
£ Manitars

ﬂ Metwork adapters

- Ports (COM & LPT)

ﬂ. Processors

=42 5CST and RAID controllers

P adaptec SC5I Card 293200 - Ultra320 5CS1
Adaptec Serial ATA 120554 Host Controller
Qlogic QLAZ000MOLAZ 100 PCI Fibre Channel Adapter
E‘,/ Sound, video and game contrallers

-5 System devices

é Universal Serial Bus contrallers

Drives attached here
will nat be testable

Does my controller card support SAT?
The easiest way to determine of your controller supports SAT is to use the STB Suite SCSI User
Defined CDB to try issuing a SAT command.

The 12-byte ATA Passthrough CDB we will use is defined as:

Byewit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | o
0 oPERATION coDE (Alh)
1 MULTIFLE_COUNT PROTOCOL | Resenved
2 OFF_LINE | CHK_CcOoND | Reserved | T_DIR | BYTE_BLOCK | T_LENGTH
3 FEATURES (7:0)
4 SECTOR_COUNT (7:0)
] LEa_Low (7:0)
G Lea_MiD (7:0)
7 LBA_HIGH (7-0)
8 DEVICE
9 COMMAND
10 Reserved
11

There are some obscure aspects of using this command — rather than going into detail about
them right now we will instead simply describe how to issue a command which will tell us
immediately if the controller supports SAT or not. We will discuss the details of each parameter
of this command later on in this article.

A Simple test command

Here is a picture of the STB Suite User Defined CDB with an ATA Pass-through command
defined which will issue an ATA IDENTIFY command to the attached drive

x
SC51 Commands

9 071,100 00,
ATASAT- 1.00,00.4.31
Change Definition,10,0,00,40,00,00,00,00,00,00,00,00,001
Compare,10,0,00,33,00,00,00,00 00,00,00,00,000

Copy and “erify, 10,0,f,3a,00,00,00,00,00,00.00,00,00

Extended Read,10,1,200,28,00,00,00,00,00,00,00,01 001 =
Futardad Saslk 1000 2R 0000 00 Q0 0000 00 00 0 _IJ

4 [

Load CDE Filﬂ Save CDB Filﬂ Add CDB | Delete CDB |
1] 1 2 3 4 h B 7 a 3 m 1

i =

COE Mame = I.-’-'-.T.-'-‘-.-S.-’-‘-.T-IDENTIFY

EpBiLsngh: L [T Increment LBA Repeat I‘I_
" B Byptes .
10 Bytes Transter Length = ey SD_ Timeout IEI

LBA MSE
% 12 Eytes |512
16 Bytes Bufer 16 20 LBALSE [4 " Stap on ermor
CDB Hesult=|

Return | Send COB | LT Hesultsl | Buffers I Stop CDB

Select your target drive on the SATA controller that you hope will support SAT. Then right-click
on the drive and choose User Defined CDBs, then enter the command exactly as show above.

Click the Send CDB button to issue the command — the CDB Result field will tell if the command

was successfully issued (congratulations, your controller implements SAT!) or if it failed (sorry,
you won’t be able to use SAT with this controller)

If the command completed successfully you can click the Buffer button so view the ATA
IDENTIFY data returned from the drive.

X

Size 1848576 {1824Kb)

A6 81 82 B3 84 A5 A6 A7 A8 A7 BA BB AC AD BE AF —

gogop [42 FF|3F 37 C8 10 06 60 00 00 60 3F 60 08 68 2B.?7......- 7...
G0BO10 00 60 60 00 2020202657 202D 444D 57 4D 41 ... W -DHMWMA

Aaaa2a 39303833 34 35 35 32 00 00 08 48 41 A0 3831 09834552, . @A .41
aBaa3a 38 2E 45 31 31 30 4457 20 43 44 57 3038 44 30 A.E118DYW CDUAS.JA
ABaaLA 2D 44 3537 53 4D 3141 202020202020 20 208 -D57SH1A

AeAas A 202820202020282020202020202010 880 s

fafaa6 A B0 B0 B8 2F 1 40 00 A8 AA BO BY BB FF 3F 1888 __ . Ff.@.___ ... R
aaaasa 3F @018 FC FE @O BB A1 98 2F A @Y @@ @B A7 BB 7........ PP S
-
File ﬂperatiun5| Fill BUFFEFlIHll Zeros (@) :j

I Buffer 1 Buffer 2 |
cances |

Note: ATA commands data byte-swapped.

Issuing the ATA SMART command
To retrieve SMART data from this drive define your CDB like this:

User Defined CDB

ATASAT-IDENTIFY.12.1, 200,41.0C.00,01,00,00,00,00,00,EC.00,00,01,1,00,00.4,3]
ATA-SAT-SMART 12,1, 200.41,0C.0E,D0,01,00,4F C2,00,60,00,00,01,1,00,00.4,3]
Change Definition,10,0,00,40,00,00,00,00,00,00,00,00,001
Compare,10,0,00,39,00,00,00,00,00,00,00,00,00

Copy and Verify,10,0,ff,3a,00,00,00,00,00,00,00,00,001

Extended Read,10,1,200,28,00,00,00,00,00,00,00,01,00

_ ended Seek 100N 2k N0.N0 NN NNON N0 N0 NN 00
~._E 3

And as before, the data is available to view, edit, or save to a file

oo

Size 1048576 (1024Kb)

80 81 82 03 04 65 B6 A7 08 07 BA BE AC OD OE BF i
Aoaaan 00 61 OF GO CB CE GO AD OO A BB BA BB B3 B3 ---.-
apee1a 80 A6 AZ BC BA OO OO 00 B0 BO B4 22 B GLH GA LG 2 .ddF
apee2a 00 60 DO OO0 B0 0D B5 33 OO CB CE GO MO GO GO OD PSR
dgoo3a G000 A7 OF OO CECE DO OO OO DO BA BB AA OD 32o -- 2
agooLa 80 63 63 EQ O3 00 00 B0 00 00 BA 12 BB 64 FD BB -CC..-......-. d..
Aeans A A0 69 00 B0 9O A0 BB 12 B0 64 FD GO AA O AR GG e
apaBs A 80 68 BC 32 B0 64 64 3E 00 B0 A0 B0 A BOBE 22 ...2 dd>....... e
aeee7 A A0 49 3B 1B 00 0 08 AA A8 AAC2 22 BB 7466 1B -L5-.-...... B o

File ﬂperatiun5| Fill BuFFerl Iﬂll Zeros (@) ‘:J

I Buffer 1 Buffer 2 |

Return

Cancel |

—_

Details of defining an IDENTIFY command

Byte\Bit | s | 5 | a4 | 3 | 2 | | o
0 OPERATION coDE (Alh)
1 MULTIPLE_COUNT PROTOCOL | Resenved
2 OFF_LINE | CH_COND | Reserved | T_DIR | BYTE_BLOCK | T_LENGTH
3 FEATURES (7:0)
4 SECTOR_COUNT (7:0)
5 Lea_Low (7:0)
G LBa_wiD {7-0)
7 LBA_HIGH (7-0)
8 DEVICE
G COMMAND
10 Reserved
11

The bytes of the command we constructed to issue an IDENTIFY command were:

0xA1, 0x0C, 0x0D, 00,00,00,00,00,0xEC,00,00

Byte O:

Looking at the command description we see that the first byte is the SCSI op code.
Byte 1:

the next byte is used to specify the protocol, as defined in this table:

Code Description
0 ATA hardware reset
1 SRST
2 Reserved
3 MNon-data
4 P10 Data-In
5 P10 Data-Out
6 DMA
T DMA Queued
a Device Diagnosfic
g DEVICE RESET
10 UDMA Data In
1" UDMA Data Out
12 FPDMAZ
13, 14 Reserved
15 Retum Response Information
3 See SATA-26.

In our command the 0x0C says we are requesting a DMA transfer. Note that you need to take
care when defining this byte because of the offset caused by bit 0 being reserved.

Byte 2:

This byte is used to define how much data we are expecting, how the amount is specified, and
which further bytes of the command will be used to specify. In the case of our IDENTIFY
command we use 0x0D, which specifies that T_DIR = 1, BYTE_BLOCK=1, and T_LENGTH = 1.
Referring to the SAT specification we see:

If the T_DIR bit is set to zero, then the SATL shall transfer data from the application client to the ATA device. If
the 7_nDir hit is set to one, then the SATL shall transfer data from the ATA device to the application client. The
SATL shall ignore the T_oir bit if the T_LeEnGTH field is set to zero.

T_DIR =1 says that the data direction will be receiving data from the drive.

The eyTE_BLOCK (Byte/Block) bit specifies whether the transfer length in the location specified by the
T_LENGTH field specifies the number of bytes to transfer or the number of blocks fo transfer. If the value in the
ByTE_BLOCK bit is set to zero, then the SATL shall transfer the number of bhytes specified in the location
specified by the T_LenaTH field. If the value in the e¥TE_BLoCK bit is set to one the SATL shall transfer the
number of blocks specified in the location specified by the T_LEnGTH field. The SATL shall ignore the
ByTE_BLOCK hit when the T_LEnGTH field is st to zero.

BYTE_BLOCK=1 says that we are expecting to transfer one block (512 bytes) of data.

The Transfer Length (T_LEnGTH) field specifies where in the CDB the SATL shall locate the transfer length for
the command (see table 98).

Table 98 — 7_LENGTH field

Code Description

1]s] Mo data is transferred
01b The transfer length is an unsigned integer specified in the FEATURES (7:0) fild.
10b The transfer length is an unsigned integer specified in the secTor_counT (7:0) figld.

11b The transfer length is an unsigned integer specified in the TPSIU (see 3.1.98).

Finall
y, T_LENGTH = 01 tells us that our transfer length is going to be specified by the integer placed
in the ATA FEATURES byte field — which in this case is byte 3 of the CDB.

Byte 3:

-as we just said — because of our T_LENGTH setting we have specified that this byte will contain
the number of blocks (because of the BYTE_BLOCK setting) of data that will be transferred, in
the direction specified by T_DIR.

Byte 4:

— contains the ATA task register SECTOR COUNT data, in this case we are transferring 1 block so
this must be set to 1.

Byte 5:

- contains the ATA task register LBA LOW byte — the IDENTIFY command needs this to be 0.
Byte 6:

- contains the ATA task register LBA MID byte — the IDENTIFY command needs this to be 0.
Byte 7:

- contains the ATA task register LBA HIGH byte — the IDENTIFY command needs this to be 0.
Byte 8:

- contains the ATA task register DEVICE byte —the IDENTIFY command needs this to be 0.
Byte 9:

- contains the ATA task register COMMAND byte — the IDENTIFY command is OxEC.

Bytes 10 and 11 :

-are reserved and so set to 0.

Details of defining a SMART command
Refer to the T10 SAT specification documentation.

Note that we specify T_LENGTH = 10, which uses the SECTOR COUNT field (Byte 4) to specify
our data length. Why did we need to do this, rather than use the FEATURES field (Byte 3) like
we did for the IDENTIFY command?

We had to do this because the ATA SMART command needs to use the FEATURES field to define
which type of SMART command we are sending — 0xDO in this case.

Conclusion

SAT is a versatile if complicated method of issuing ATA commands to drives which are
connected to controllers which Windows thinks are SCSI type. It is preferable rather than being
forced to implementing controller vendor-unique pass through methods.

SAT is not universally supported or implemented. The controller that was used to illustrate this
article is an LSI 8888 card, which happily does implement SAT and so allows access to “raw” ATA
commands which would otherwise not be usable.

